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BEST RATIONAL APPROXIMATIONS WITH NEGATIVE POLES TO e * ON [0;”)
E.H. Kaufman, Jr. and G.D. Taylor

In this paper a theory for approximating e * on [bf‘) with
rational functions having negative poles is developed. Numerical
results suggest that the best uniform approximation to e ¥ on

O0,) from this class has only one pole and this is shown to be
the case when using rational functions of this form which are
linear polynomials divided by quadratic polynomials. Numerical
results are given and compared to recent results of Saff, Schou-

hage and Varga.
1 Introduction

Let nm'denote the space of all real algebraic polynomials of
degree less than or equal to m. For eachm = 1,2,..., define Qm R
by

m
R; = {R-P/Q: P € LI Q(x)=i21(qix#l), q;.0 for all i}.

Thus, R is the collection of all rational functions with negative

poles from R:-ltb,W). Define Am by
; -x ¥ 2 .
(1.1 A = inf{|le " - R”Lmﬁ)‘m). ReR}

It is known that Am converges geometrically to zero (i.e.

A;/m = 0) since Saff, Schonhage and Varga [5] have proved

@
there exists a sequence {R } with R (x) = P (x)/(1+
m n m-1

m=1"

e
pm-l - such that

1/m 1

- 277 e o L
S - LT [le™ -l <L

In addit{on, since the poles of Km(x) are all real it follows that

Rn(z) must converge geometrically to ¢ ” in an infinite sector
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symmetric about the positive x-axis [6]. In what follows, we
define

L2 w = inf{||e™® P(x) en -1,

i (1+ 5® | L [o,=)° PEn
m

An application of.this theory is in the construction of num-
erical algorithms for solving linear systems of ordinary differ-
ential equations which arise from semi-discretization of linear
parabolic partial differential equations (see [1], [5)). Num-
erically, this reduces to an iteration of the form

(r) (r-1) -1
~

(1.3) = A k ¥R (Aca) (g - Ak}

where A is a nxn matrix (band), k and g‘j) are n dimensional
vectors (n is related to the stepsize of the discretization), At
is a scalar and R is the rational function defé:id above. Due
to the special form of the denominator of Rm, 3 can be obtained
from the repeated inversion of (I + 9& AZ§£+1 =8¢ 05 LE5m~ 1
using an appropriately defined &o* This is an attractive mzthod
numerically, since an LU factorization can be done for I + . A
only once and this factorization will preserve any band structure
that is present.

One can construct a similar numerical method using a solution
R (x) Pn (x)/ H (q x+1) to (1.1). The apparent disadvantage
of such a method cgmpared to that of [é] is that w(r) is found

from

(n (L+q; AtA)}w(')

={ n (1+q AtA)}A™ k+p (AtA){x(r_l)-A_Lk}

i=1 i=l ACCISN0 Y 1 A

oy r
. e : oy ww{ugéﬁ-
which will involve a greater number of oparations (though, less 26 “;;'v“
L TN
UNANiOUNCED s
than m LU factorization and 2m substitutions). The advantage of | Jisnriganon
this method is that An will be smaller than M, giving increased
*
. . 14
accuracy. However, it appears (numerically) that R actually it s
¥ ; 5 ' m CISTRISUTION /aVAtLARILITY goge

e
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has 9 "9, " ... = q nn: Am is approximately one half ofum
for m > 2. Thus, using Rm gives a method that has the same
desirable properties as that of (1.3) and increased accuracy.

In the next section we shall state some general facts con-
cerning uniform approximation from R_ (these results will appear
in a future paper [5]), give a theoretical treatmeht of best
uniform approximation of (1.1) for the special case that m = 2
and state some conjectures. In the last section we will discuss

our algorithm and present some numerical results.

2 Theoretical Results

In this section we begin by giving a existence theorem for
approximating from Rm on [b,m). This result is valid for a large
class of functions (containing e *). We shall outline a proof for

the special case that m = 2,

* -x _*
THEOREM 2.1. There exists R ¢ gm for wﬁich |le *Rr (X)lle[b,aJ

= Am_

OREM 2 Th i * & B dor whith |l %1 (x)
THEOREM 2.2. ere exists R ¢ R, for whic | |e x IIL¢t0,a9

Proof. The proof begins by first observing that Xz < % . Thus,
let fan}, {bn}’ {qln} and {q2n} (n=1,2,...) b? sequences such

anx+bn ||

1 -x
> -— -
that 9 >0, 1, 0 for all n and = > ||e q : DY . D

2

"Xz as n + o where we will no longer write the subscript Lm£0,°°)
on the norm bars. Next, the proof is divided into two cases. The
first casc is when the sequences {qlm} and {an} are bounded. In
this case it follows that the sequences {an} and {bn} are also
bounded and the desired result follows as in the standard rational

approximation theory.

Thus, let us assume that the sequences {qln} and {an} are

not both bounded. By relabelling and extracting subsequences we

|\)a
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may assume that qln? ® and Un > 9%, for ali n. In addition, by
looking at the error curve st x = 0 and x = 2 respectively, we
have that %5 bn _<_% for all n, and for all n sufficiently large
(say n > no) that

S :

2 n <M

(2.1) 0<ncx< 1 1
(-2' “m’”('z' q2n+1)
where n and M are positive constants independent of n.

Next, we claim that the sequence {an} must be bounded. In-
deed, if not then by passing to subsequences (and relabelling) we

way assume that q, + @ as n > Let x -EI(%qmﬂ)(-;-qznﬂ)]-l

€ [D."). Note that xnn} 0 and that

ax +b ax
nn__n % n' n T
(qlnxn-fﬂ(qznxnﬂ) - qunxnﬂ;zqz“xnﬂs

as n * ®, For n sufficiently large this contradicts our assump-

ax+hb
tion that ||e X - g 2 Il < 1 Thus {q, } must be
(qlnxﬂszqhxﬂs -2 * TV2a

bounded. Since a + = by (2.1), we have, reciprocating (2.1),
that there exists positive constants < and <, independent of n

such that for n > ny >n_,
- -0

c q c
(2.2) .—2— <28 <2
2 anﬂ B 2 anﬂ

By (2.2) we may extract a subsequence (and relabel) for which
9, * 9 20 and qln/.n +c* >0 as n+ o Hence, for fixed
x ¢ (0,») we have that

ax+hb
n n * 1 - b*
zqh.‘xﬂﬂqznxﬂ) c*(q*x+l)  q¥x+l °

- *
By continuity, ||e *. ;T:'if“ < Az completing the argument.g




The above proof (suitably modified) also establishes the
~~
following corollary where Rm = {R=P/Q: P € -1 Q(x)=(qx+1)m,

q > 0}.

; ol o B
COROLLARY 2.3. There exists R € R such that |le "-R|| =

inf(||e*-R||: R R }.

Next, we wish to turn to proving that for the m=2 case the
best approximation from RZ is actually contained in.E;. To do
this we shall first show that neither of the coefficients in the
denominator is zero and that the numerator and denominator do not

have a common non-constant factor.

THEOREM 2.4. The best approximation to "B from R2 is not of the

form ﬁi%%, q > 0.

Proof. To prove this we use some computed results. First of all,
running the Remes-Difcor algorithm as described in [2], we found
the "best" app::ximation ¢i>f ;g(e) fornn(ax+l’/glx+q2‘; (with (qll & Xy
|q2| <1) toe " on X ={-i§}i=0'
values: a =-.0934450154, b = 6698426328, q = 1.0 and q, =

= 0.0, x, =

This routine returned the

.6330537047., It also returned four extreme points 3
.kb,ix3 = 2.76 and x, = 20.0 such that e —gaxi+b/qlxi+q2)=
(-1) e, with e, > .058 for all i=1,2,3,4. Thus, by a de La Vallee

Poussin type argument we have that inf{llc-x—rll . PR
L [9,

re Rito.w)} > .058. Next, sctring r*(x) = (a*xsb¥ (pix+1)? with
a* = - 1853243706, b* = 1,022709327 and p* = .524169575 we cal-
culated y = max{lo-x—r*(x)l: x = i/1000 for 0 < i < 20,000} and
found that y < .023. Next, by dividing [0,20] into [O,z] and
[z,Zdu where z is the zero of r*(x) we are able to show that
|E'(x)]| < 3.2 on [b,zd] where E(x) = e “-r*(x). Using this and
the above value of y with Taylor's theorem for linear polynomials
we can show that |E(x)| < .0246 on [0,20]. Since E(x) > 0 and
E'(x) < 0 for x > 20, we have that |E(x)| < E(20) < .022 for

|\




x > 20. This completes the proof.

Note that this proof also shows that r* is a better approxi-
mation than the one calculated in [i] for m=2. Next, we turn to
proving that for any best approximation in the m=2 case, the
coefficients in the denominator coalesce; that is, a = q,-

THEOREM 2.5. Any best approximation to e from R on [b @) be-

longs Eg 2} that is, it is of the form(ax+§V(qx+l) with q > 0.

Furthermore, q > 0, and the numerator and denominator have no

non-constant common factors.

Proof. The facts that q > 0 and the numerator and denominator
have no non-constant common factors follows from Theorem 2.4.

Let R(x) = (pl+p2x)/(q1x+l)(q2x+l) be a best approximation to e -
on [9 ) from R with 0 < q; < q,. We first claim that e © - R(x)
has at least 5 alternatxng extreme points in [0 a] where a is

chosen such that x > a implies le” —R(x)l < Elle -R(x)llL [O,m) =

%Az. This follows from the fact that R € R;[b,a] and has deflect
zero, since if e *-R(x) had fewer than 5 alternating extreme
points, then the standard argument to prove alternatlon in R [Oﬁﬂ
can be used to find R(x)=(a+bx)/(l+cx+dx?) ¢ R [0 d] such that
[|e™™ R(x)llL [b,d] < |le” -R(x)||L [Q,d) and'thh Ip1 al, 'pz b,
|q1+q2-c| and Iqlqz-dl as small as desired. Thus, we can guaran-

-y i
tee that ||e -R(x)!lLN[b.m) < A, helds and that R(x) also has

unequal negative roots (the discriminant of 1+cx+dx2 can be made
arbitrarily close to that of l+(ql*q2)x+qlq2x2). This, of course,
is a contradiction showing that e “-R(x) must have 5 alternating

extreme points on [p,uJ.

Thus, R(x) is the best approximation to e . on [0,&] from
1 ; ;
Rz by the classical alternation thcorem and also, therefore on

[b,u). Thus, we shall complete this proof by showing that the




best approximation to e * from R;[b,w) does not have real poles.
To do this, we computed the '"best approximation', R(x) =
(a+bx)/(1+cx+dx?) to e * from R;[O,ZQ] on a 200,001 point equally
spaced grid imposed on [b,ZO . The computed results (rounded to
10 decimal places) were a = .9911236330, b = -.1577830783, ¢ =
.6704780400, d = .6494291043; the extreme points were y1=0, ¥,=
.2483, y3=1.0852, y4=3.2271 and yg
at the extreme points were .0088763670 (they actually differed by

=13.1518. The absolute errors

less than 5x10-18) and the sign of e -R(x) was positive at Yy
The discrimant of the denominator was -2.1481756150. By direct
calculation, it can be easily seen that E(x) = ¢ "=R(x) > 0 and

E'(x) < 0 for x > 20, mu,HNﬂHf@m)=““”“fhz®'

Now, let us assume that there exists Re R; having negative poles
and for which ||e_x-§(x)|| < ||E(x)|| holds, where for the re-
mainder of this proof ||-|| = II.IILm[O,ZO]' This will lead to a
contradiction and give our desired result. We begin by noting
that |[E'(x)| < 1 for all x ¢ [O,ZQ] since -e * and -R'(x) have
opposite signs for x ¢ [0, -a/b] and |R'(x)] < 1 for all x since
the denominator is jincreasing faster than the absolute value of
the numerator for all x. For x € (-a/b,Zd} simply look at the
ratio of the maximum of the numerator on this interval and the
value of the denominatord-a/b. Thus, by the mean value thecorem
we have that for each x € [0,20], [E(x)-E(x)| < .00005 where x de-
notes a closest grid point to x. Let 8§ = .000054, then ||E|| -
min{|E(y)|: i=1,...,5} < § since ‘E(yi)-E(y.)| < .000002 for i,
j=1,...,5. Since we are assuming that ||¢™*-R(x)|| < ||E(x)|],
we must have that ||c_x-§(x)|| - min{|E(yi)|:i.= 1,...,5} < 8.
Now, there must exist io' 1< io < 5 such that (’1)1°(R(yi )

- - . : o
- R(y, )) > 0 since R # R, Let us assume that max{(—l)l(R(yi) -
o

Rly;): i = 1,...,5) = (-1)>(R(yg)-R(y,)). Next, find R*(x) =
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(a*Aa*(b+Ab)x)/(1+(c+Ac)x#(d+Ad)x% such that R*(y.) = R(y,) +
(-1)'6 for i = 1,...,4. To do this we must solve the linear
system Aa#Abyi-Acyi(R(yi)+(-1)16)—Ady§(R(yi)+(-l)16) = (1+cyi+dy§)

(-l)ia, i=1,...,4. Solving this with Cramer's rule, with the
determinants computed by cofactor expansion to avojd error magni-
fication by divisions, gives Aa = -,0000540000, Ab = .0004710533,
Ac = -.0005063974, Ad = .0019944507. Using this R*, we have that
R(ys) - R*(ys) = -.0000746489 and | |R(y,)-R*(y)| - 6] < 2 x 107'*
for i = 1,...,4. The discrimant of R* was -2.156832218. Now, by
construction, (-1) (R(y ) - R*(y )) < 0, i=l,...,4, and also, for
i=1,...,5 we must have (- 1) (R(y )) < 6, sxnce [le” R(x) || <
min{|E(yi)|. l,...,5} + 8. Now, suppose (-1) (R(ys) R*(ys))>0
(for, if not, then R = R* and we have our desired contradiction
as R*¥ has non real poles). Then, we have that 6* + R(YS) R* (ys)
> R(yS) and that &§* = (-1) (R(ys) R(ys)) > (-1) (R(y )- R(y )

i=1,...,5 so that IR(yi)-R(yi)l £ 0% i=1,..,,5 Letting
ﬁ(yi) - R(yi) = Gi, i=1,...,4, we can estimate the coefficients
of R from the equations R(yi) = R(yi) + Si, i=1,...,4, where we
know that |6i| < 8% Writing R(x) = (a+Aa+(b+Ab)x)/(1+(c+Ac) +

(d+Ad)x"), this system is equivalent to
2 % 2
Aa+Abyi-Acyi(R(yi)+6i)-Adiyi(R(yi)+6i)-(l+cyi+dyi)6i,
BB PO

Once again we resort to Cramer's rule to estimate Ac and Ad.
Writing the determinant of the coefficients of this system as the
sum of four determinants, one of which had no Gi's in it (say D),
we then computed D (= .1194079538) and estimated upper bounds for
the three remaining determinants, subtracting these values from D
showed that the determinant of the coéfficients > .1192288500.
Calculating upper bounds for the numerator dcterminants in the

formulas for Ac and Ad and then estimating gives (Ac[:.OOlZAJOlZl‘

l )




|ad| < .0027602264. Thus, letting D, and D, denote the discrimi-
nant of the denominators of R aud R, respectively, we have that
|D1 = 51| % .01?7092755. Treating the other cases where the
maximum of (-I)I(R(yi)-ﬁ(yi)) occurs for i = 1,2,3, or 4, simil-
arly, we found that ‘DI-DI| < .3959944800, .1553098052,
.0673900941 and .0219551497, respectively. ;

We conjecture that this result is true for all m > 2. We

close this section by stating a local characterization and local

uniqueness result which will be proved in a forthcoming paper(2].

Definition 2.6. R(x) = (p1+...+pmxm_1)/(qx+1)m E'E; is a local

best approximation to e * on [O,w) if there exists a § > 0 such

that if R(x) = (51+...+mem_l)/(ax+1)m € Rm, Ipi—sil & g

i=1,...,m and |q-q| < & then Ile-x-R(x)ll s lle_x-ﬁ(x)ll. If, in

addition, strict inequality holds whenever R(x) 7 R(x) then R is

said to be locally unique.

THEOREM 2.7. Let m > 1. Then a nondegenerate R(x) = P(x)/Q(x) =
- o d
(p1+...+pmxm 1)/(qx+1)m € Rm (i.e. R # 0, P(x) and Q(x) have no
caommon factors and q > 0) is a best local approximation to e ™
~ =
from Rm on [0,2) if and only if e * - R(x) has at least m + 2
alternating extreme points. Whenever this occurs, R is locally

unique.

We remark that numerical examples seem to suggest that there

L
exist distinct R, Ry € RZ satisfying this theorem.

3 Numerical Results

Our initial algorithm for computing approximations to e
from Rm and ﬁ; inv>lved linearizing the denominator by Taylor's
Theorem and setting up an iterative procedure, using the differ-
ential correction algorithm to compute an approximation at each

m
inner stage. Precisely, for Rm set g(ql,...,qm,x) = iﬁl(in*l)




N

m
and define wj(ql,...,qm,x) = xigl(qix+1) for j=1,...,m,

i) m
wo(q1v°"’qm.X) = g(ql,---,qm:x) = Zlqvwv(ql,...,qm,x). Thus,
m V=
if R(x) = P(x)/iﬂl(aix+l), 0= 9, < a, o s q is an approxi-

; X : : .
mation to e at some step in the algorithm, then a new approxi-

= m ;
mation R(x) = (p°+p1x+...+pm X" 1)/igl(qixﬂ) is ‘found by cal-

-1
culating Pore - sPp_129ys- sy that minimize ||e x-(po*...+pm_1

-1 - - — - - -
X )/(qlwl(ql....,qm,x)+...+qmwm(ql,...,qm,x)+wo(q1,...,qm,x))l|

over T a finite subset of [b,N]. Observe that the denominator in
this problem is precisely the linearization of g(ql,...,qm,x) via
Taylor's Theorem applied to the first m independent variables.
This minimum can be calculated by the differential correction
algorithm. Since this is a linearizaticn of the problem we wish
to solve, if we force an ordering on the 9ys--+»9g to get a
unique solution, it seems reasonable to expect that if the init-
ial approximation is sufficiently close to a best approximation
then this algorithm will converge to that best approximation.
This approximation must be calculated on a large interval
(the length of the interval needed seems to increase as a func-
tion of m, but not monotonically) to give a candidate for a best
approximation to e ¥ on [O,W); and since we wish to get an
accurate approximation of the continuous soldtion, we must use a
fairly fine mesh so that card (T) will be large. Since the diff-
erential correction algorithm tends to become unstable as card
(T) grows large, we decided to use the Remes-Difcor algorithm
[i] for calculating the linearized minimum. We did this because
this algorithm applies the differential corteciion algorithm to
certain (small) subsets of T chosen in such a manner (depending
upon angrnation) that convergence to’the solution on the whole
space occurs, Thus, we had no a priori guarantee that this would

work since a standard alternation theory-does not exist for the
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linearized minimization problem due to the addition of the con-
m

straints on {qi}1 However, in spite of this, the results of

the algorithm are zcceptable in that the algorithm returned (or
tried to return) a solution in which the qi’s coalesced and for
which the error curve e » - P(x)/iﬁl(qx+l)m (the final coalesced
approximation) alternated on m+2 points of T. ThJs, by an alter-
nation theorem we have proved [3], we have a best local approxi-
mation froun?in and as we conjectured earlier; therefore, also
from Rm; we also ran an algorithm of this character for the class
E;. In all cases it has given the same results as the above
algorithm applied to Rm' A precise study of these algorithms
remains to be done and we conjecture that convergence results
can be proved for both Rm and ?;“ at least using the differentizal
correction algorithm for the inner minimization.

We have run these algorithms for various values of m using
a grid with spacing .002 imposed on an interval [b,NJ, where
N is chosen by trial and error so that the computed results make
it apparent that the error norm on [N,m) is smaller than the
error on [b,N]. The computations were done on a UNIVAC 1106,
which has roughly 18 digits of accuracy in double precision.

Initially, we start with §o=1, El=...=p =0, aj = ﬁ, 1205 . .o ;m

m-1

and ran the program with additional constraint;qi < e DIFF

where DIFF is a nonnegative paramcter. If DIFF > 0 we found
that the computed qi's immediately differed by exactly DIFF, and
if DIFF was set equal to O the algorithm ran and the computed

A
qi's coalesced. The algorithm for Rm had a linearization in
which the denominator of the approximation is ‘gem x(c_pm'l)m—1 +
[(l-m)ax+ (t-;x*-l)m“1 = q¥,(q,x) + ¥ (q,x) where q is the valuc
1 o

from the previous approximation. Here the initialization was

Po ™ LB W v Rl

program to run for seven outer iterations, the coefficients near-

=0, q = 1/n. ' Although we allowed this

ly always stopped changing after four or five outer iterations,




and the computed absolute values of the errors at the m + 2
extreme points agreed to at least fourteen significant figures.
The results are shown in the table below, with the error of ISJ
given in the last column for comparison purposes. The sign
attached to the last extreme point is the sign of E(x) at that
point. It should be noted that it is possible (afthough unlike-
ly) that in some cases there is a local best approximation other

than ours which gives a smaller error. In the m = 3 case we

have found another local best approximation (with, g = 1.05109 St

and ||error|| = 1.33720 (-02) and in the m = 6 case there appear
to be at least three local best approximations other than the one
in the table.

Finally, we would like to thank Professor R.S. Varga for
bringing [4] to our attention where some of the results of this

paper and of t3] have also been obtained independently.

Table of Numerical Results

?

last ext. pt. g |lerror|| |error|| (5

m aid

2 12.932+ 52416  2.27093 (-02)  2.49038 (-02)

3 37.250- 27127 8.04713 (-03) 1.5053 (-02)

4  83.8144 17797 3.30771 (=03)  7.85325 (-03)

5 80.802+ .27866  1.16064 (=03)  3.05486 (-03)

6  152.352- 19296 4.26252 (-04) 8.89316 (-04)
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